

Cardiac Implications of Novel Coronavirus (COVID-19)

Background on Coronavirus Epidemici,ii,XIII

- COVID-19 was first reported in late December 2019, originating in Wuhan, China
- COVID-19 is a betacoronavirus, like SARS and MERS, presenting as viral pneumonia with a wide range of acuity
- As of February 28, there are 83,863 confirmed cases and 2,867 confirmed deaths across 61 countries; COVID-19 appears to have greater infectivity and a lower-case fatality rate when compared to SARS and MERS
- Although the overall mortality rate remains low, published reports from China may indicate elevated mortality risk for diabetics, hypertensives, patients with underlying cardiovascular disease, and the elderly
- While the majority of COVID-19 cases remain in mainland China, sustained transmission in multiple countries increases the likelihood of a worldwide pandemic
- The US Centers for Disease Control (CDC) expects community spread in the United States; for complete up-to-date guidance, please visit https://www.cdc.gov/coronavirus/2019-ncov

Early Cardiac Implications From Case Reports on COVID-19

- Early case reports suggest patients with underlying conditions are at higher risk for complications or mortality from COVID-19; up to 50% of hospitalized patients have a chronic medical illness, 80% of which are cardiovascular or cerebrovasculariii
- In the most recent large-scale reporting from China CDC, 25% of patients with complete medical histories have comorbidities, the majority of which are cardiovascular- or diabetes-related; while lower than initial reports, 53% of all COVID-19 confirmed patients in the study were missing documentation of underlying conditionsxii
- Overall the case mortality rate remains low at 2.3%; however, the mortality rate jumps to 6% in hypertensives, 7.3% in diabetics, 10.5% in patients with cardiovascular disease, and 14.8% for patients ≥ 80 years of agexii
- Notably, the case mortality rate for underlying cardiovascular disease (10.5%) is greater than in patients with underlying chronic respiratory disease (6.3%)

- In a detailed case report on 138 hospitalized COVID-19 patients:iv
 - 19.6% of patients developed acute respiratory distress syndrome
 - 16.7% of patients developed arrhythmia
 - 7.2% developed acute cardiac injury
 - o 8.7% of patients developed shock
 - 3.6% developed acute kidney injury
 - Rates of complication were universally higher for ICU patients
- The first reported death was a 61-year-old male, with a long history of smoking, who succumbed to acute respiratory distress, heart failure, and cardiac arrest
- Early, unpublished first-hand reports suggest at least some patients develop myocarditis

Potential Cardiac Implications From Analog Viral Respiratory Pandemics

- Influenza analog: In all influenza pandemics other than the 1918 flu, cardiovascular events surpassed all other causes of mortality, including superimposed pneumonia^v
- General viral analog: Viral illness is a well-known destabilizing factor in chronic cardiovascular disease, a general consequence of the imbalance between infectioninduced increased metabolic demand and reduced cardiac reserve. The viral infection along with superimposed pneumonia will directly and indirectly affect the cardiovascular system^{vi}
 - O Both coronary artery disease and heart failure patients are at increased risk of acute events or exacerbation; viral illness can potentially destabilize coronary plaques through several mechanisms including systemic inflammatory responses which have been recently documented with COVID-19
 - Multiple co-morbidities (DM, obesity, HTN, COPD, CKD) further increase risk
- SARS/MERS analog: Although published literature on CV implications of SARS/MERS is limited, in the absence of more detailed reporting on COVID-19, it may prove instructive
 - 60% of MERS cases had one or more pre-existing comorbidity, resulting in a poorer prognosis; expert guidance suggests patients with diabetes, CVD, or renal disease should be prioritized for treatment^{vii}
 - Both SARS and MERS have been linked to acute myocarditis, acute myocardial infarction, and rapid-onset heart failure
 - In one early published report, 2 out of the 5 deaths were attributed to MIviii,ix
 - These data should be interpreted cautiously—indicative of the increased CV risk in coronavirus patients, but not generalizable to broader outcomes

- Reversible, sub-clinical diastolic LV impairment in acute SARS even among those without underlying cardiac disease appears common, likely the result of systemic inflammatory immune response and is not unique to SARS; however, lower EF upon admission was predictive of later mechanical ventilation x
- o In one study of cardiovascular complications of SARS in 121 patients:xi
 - 71.9% of patients developed persistent tachycardia, including 40% with continued tachycardia during outpatient follow-up
 - 50.4% of patients developed sustained asymptomatic hypotension during hospitalization; one patient required inotropic support
 - 14.9% of patients developed transient bradycardia
 - 10.7% of patients developed transient cardiomegaly, without signs or symptoms of heart failure
 - One patient experienced transient paroxysmal AF, with spontaneous resolution
 - Cardiovascular complications appeared statistically uncorrelated with oxygen desaturation or ICU admission

Clinical Guidance Given Current COVID-19 Uncertainty

- COVID-19 is spread through droplets and can live for substantial periods outside the body; containment and prevention using standard public health and personal strategies for preventing the spread of communicable disease remains the priority
- In geographies with active COVID-19 transmission, it is reasonable to advise
 patients with underlying cardiovascular disease of the potential increased risk and
 to encourage additional, reasonable precautions
- Older adults are less likely to present with fever, thus close assessment for other symptoms such as cough or shortness of breath is warranted
- Some experts have suggested that the rigorous use of guideline-directed, plaque stabilizing agents could offer additional protection to CVD patients during a widespread outbreak (statins, beta blockers, ACE inhibitors, ASA)^v; however, such therapies should be tailored to individual patients
- It is important for patients with CVD to remain current with vaccinations, including
 the pneumococcal vaccine given the increased risk of secondary bacterial infection;
 it would also be prudent to receive influenza vaccination to prevent another source
 of fever which could be initially confused with coronavirus infection
- It may be reasonable to triage COVID-19 patients according to the presence of underlying cardiovascular, respiratory, renal, and other chronic diseases for prioritized treatment
- Providers are cautioned that classic symptoms and presentation of AMI may be overshadowed in the context of coronavirus, resulting in underdiagnosis

- For CVD patients in geographies without widespread COVID-19 emphasis should remain on the threat from influenza, the importance of vaccination and frequent handwashing, and continued adherence to all guideline-directed therapy for underlying chronic conditions
- Hospital and medical personal in the United States should be prepared to implement CDC guidance on personal protective equipment (PPE)
- COVID-19 is a fast-moving epidemic with an uncertain clinical profile; providers should be prepared for guidance to shift as more information becomes available

Expert Advisors

Mohammad Madjid, MD, MS, FACC, FSCAI

Assistant Professor of Medicine
McGovern Medical School
University of Texas at Houston Health Science Center
Memorial Hermann Heart and Vascular Institute

Scott D Solomon, MD, FACC

The Edward D. Frohlich Distinguished Chair Professor of Medicine Harvard Medical School Brigham and Women's Hospital

Orly Vardeny, PharmD, MS, FAHA, FHFSA

Minneapolis VA Center for Care Delivery and Outcomes Research Associate Professor of Medicine University of Minnesota

Correspondence

Brendan Mullen, EVP, Science & Quality, American College of Cardiology bmullen@acc.org

Reviewed and Approved

February 28, 2020 ACC Science and Quality Committee

- 2019 Novel Coronavirus Situation Summary, Centers for Disease Control (February 28, 2020), retrieved from https://www.cdc.gov/coronavirus/2019-nCoV/summary.html
- ii. Coronavirus COVID-19 Global Cases by Johns Hopkins CSSE (February 28, 2020), retrieved from https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html?fbclid=lwAR29qGU1Zs2huweaWHXJA7sl_Yn kdDNreGxKeH7qMHVVqXvuymQVBDrSBg#/bda7594740fd40299423467b48e9ecf6

- iii. Chen H, Zhou M, Dong X, et al. Epidemiological and Clinical Characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; published online January 29. https://www.thelancet.com/action/showPdf?pii=S0140-6736%2820%2930211-7
- iv. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. Published online February 07, 2020. doi:10.1001/jama.2020.1585
- v. Madjid M, Casscells SW. Of birds and men: cardiologists' role in influenza pandemics. Lancet 2004. 364: 1309.
- vi. Expert opinion
- vii. Al-Abdely, HM, Midgley, CM, Alkhamis AM, et al. Middle East Respiratory Syndrome Coronavirus Infection Dynamics and Antibody Responses among Clinically Diverse Patients, Saudi Arabia. Emerging Infectious Diseases 2019. 25(4): 753-766.
- viii. Alhogbani T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. *Annals of Saudi Medicine* 2016. 36(1): 78-80.
- ix. Peiris JM, Chu CM, Cheng VC. Clinical Progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 2003. Retrieved from http://image.thelancet.com/extras/03art4432web.pdf
- x. Li SS, Cheng C, Fu C, et al. Left Ventricular Performance in Patients with Severe Acute Respiratory Syndrome: A 30-Day Echocardiographic Follow-Up Study. *Circulation* 2003. 108: r93-98).
- Yu CM, Wong R, Wu EB. Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med J 2006. 82:140-144.
- xii. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Disease (COVID-19). China CDC Weekly 2020. 2(8): 1